Each object in your cluster has a Name that is unique for that type of resource. Every Kubernetes object also has a UID that is unique across your whole cluster. For example, you can only have one Pod named myapp-1234 within the same namespace, but you can have one Pod and one Deployment that are each named myapp-1234. For non-unique user-provided attributes, Kubernetes provides labels and annotations. Names A client-provided string that refers to an object in a resource URL, such as /api/v1/...| Kubernetes
For unauthenticated users, kURL will calculate a hash based on the selected components and their versions. This hash becomes the name & unique identifier of that installer for all installation methods (standard, HA and airgap). For example, the airgap installer for fa57b02 can be found at https://kurl.sh/bundle/fa57b02.tar.gz.| kurl.sh
Kubernetes runs your workload by placing containers into Pods to run on Nodes. A node may be a virtual or physical machine, depending on the cluster. Each node is managed by the control plane and contains the services necessary to run Pods. Typically you have several nodes in a cluster; in a learning or resource-limited environment, you might have only one node. The components on a node include the kubelet, a container runtime, and the kube-proxy.| Kubernetes
Networking is a central part of Kubernetes, but it can be challenging to understand exactly how it is expected to work. There are 4 distinct networking problems to address: Highly-coupled container-to-container communications: this is solved by Pods and localhost communications. Pod-to-Pod communications: this is the primary focus of this document. Pod-to-Service communications: this is covered by Services. External-to-Service communications: this is also covered by Services. Kubernetes is al...| Kubernetes
An overview of the key components that make up a Kubernetes cluster.| Kubernetes