Steel E-Motive represents a fully autonomous ride sharing vehicle concept showcasing the strength and durability of steel with a critical focus on sustainability for reaching net zero emissions targets. The results are comfortable, safe and affordable body structures that support automakers in the continued development of Mobility as a Service (MaaS) ride sharing models. The […]| AHSS Guidelines
Part Integration with an innovative battery housing design and laser welded blank door ring can be used to reduce both mass and cost.| AHSS Guidelines
Reducing the number of individual parts within an automotive body structure, through part integration, can yield further cost, weight, and sustainability benefits without compromising performance.| AHSS Guidelines
The Steel E-Motive autonomous vehicle program–commissioned by WorldAutoSteel in partnership with Ricardo plc–has developed the world’s first fully autonomous electric vehicle body structure concept purpose-fit for ride-sharing. This global steel industry initiative showcases the strength and durability of steel with an eye on playing a pivotal role in reaching net zero emissions targets.| AHSS Guidelines
Autonomous Vehicle Safety is addressed by Steel E-Motive, one of the first robotaxis to fully detail and report compliance to global high-speed safety standards. In developing Steel E-Motive, we targeted conformity with seven US crash standards, including US NCAP (New Car Assessment Program) IIHS and FMVSS (Federal Motor Vehicle Safety Standards) front, side, and rear impact tests while also assessing performance against worldwide protocols, including NHTSA (US) Euro NCAP (European) and China...| AHSS Guidelines
There is an increased need to join magnesium alloys to high-strength steels using resistance spot selding to create multi-material lightweight body structures for fuel-efficient vehicles.| AHSS Guidelines