Traditional STARKs require a cyclic group of a smooth order in the field. This allows efficient interpolation of points using the FFT algorithm, and writing constraints that involve neighboring rows. The Elliptic Curve FFT (ECFFT, Part I and II) introduced a way to make efficient STARKs for any finite field, by using a cyclic group of an elliptic curve. We show a simpler construction in the lines of ECFFT over the circle curve $x^2 + y^2 = 1$. When $p + 1$ is divisible by a large power of $2$...| IACR Cryptology ePrint Archive
We introduce an efficient SNARK for towers of binary fields. Adapting Brakedown (CRYPTO '23), we construct a multilinear polynomial commitment scheme suitable for polynomials over tiny fields, including that with just two elements. Our commitment scheme, unlike those of previous works, treats small-field polynomials with no embedding overhead. We further introduce binary-field adaptations of HyperPlonk (EUROCRYPT '23)'s product and permutation checks and of Lasso (EUROCRYPT '24)'s lookup. Our...| IACR Cryptology ePrint Archive