When several users or teams share a cluster with a fixed number of nodes, there is a concern that one team could use more than its fair share of resources. Resource quotas are a tool for administrators to address this concern. A resource quota, defined by a ResourceQuota object, provides constraints that limit aggregate resource consumption per namespace. A ResourceQuota can also limit the quantity of objects that can be created in a namespace by API kind, as well as the total amount of infra...| Kubernetes
Pods are the smallest deployable units of computing that you can create and manage in Kubernetes. A Pod (as in a pod of whales or pea pod) is a group of one or more containers, with shared storage and network resources, and a specification for how to run the containers. A Pod's contents are always co-located and co-scheduled, and run in a shared context. A Pod models an application-specific "logical host": it contains one or more application containers which are relatively tightly coupled.| Kubernetes
FEATURE STATE: Kubernetes v1.26 [stable] Windows HostProcess containers enable you to run containerized workloads on a Windows host. These containers operate as normal processes but have access to the host network namespace, storage, and devices when given the appropriate user privileges. HostProcess containers can be used to deploy network plugins, storage configurations, device plugins, kube-proxy, and other components to Windows nodes without the need for dedicated proxies or the direct in...| Kubernetes
Pod is a collection of containers that can run on a host.| Kubernetes
Kubernetes runs your workload by placing containers into Pods to run on Nodes. A node may be a virtual or physical machine, depending on the cluster. Each node is managed by the control plane and contains the services necessary to run Pods. Typically you have several nodes in a cluster; in a learning or resource-limited environment, you might have only one node. The components on a node include the kubelet, a container runtime, and the kube-proxy.| Kubernetes
Kubernetes nodes can be scheduled to Capacity. Pods can consume all the available capacity on a node by default. This is an issue because nodes typically run quite a few system daemons that power the OS and Kubernetes itself. Unless resources are set aside for these system daemons, pods and system daemons compete for resources and lead to resource starvation issues on the node. The kubelet exposes a feature named 'Node Allocatable' that helps to reserve compute resources for system daemons.| Kubernetes
Welcome to the containerd documentation! This document contains some basic project-level information about containerd.| containerd
Note: Dockershim has been removed from the Kubernetes project as of release 1.24. Read the Dockershim Removal FAQ for further details. You need to install a container runtime into each node in the cluster so that Pods can run there. This page outlines what is involved and describes related tasks for setting up nodes. Kubernetes 1.33 requires that you use a runtime that conforms with the Container Runtime Interface (CRI).| Kubernetes
Expose an application running in your cluster behind a single outward-facing endpoint, even when the workload is split across multiple backends.| Kubernetes
In Kubernetes, a HorizontalPodAutoscaler automatically updates a workload resource (such as a Deployment or StatefulSet), with the aim of automatically scaling the workload to match demand. Horizontal scaling means that the response to increased load is to deploy more Pods. This is different from vertical scaling, which for Kubernetes would mean assigning more resources (for example: memory or CPU) to the Pods that are already running for the workload.| Kubernetes