Abstract To reduce the amount of nonclimatic biases of air temperature in each weather station’s record by comparing it with neighboring stations, global land surface air temperature datasets are routinely adjusted using statistical homogenization to minimize such biases. However, homogenization can unintentionally introduce new nonclimatic biases due to an often-overlooked statistical problem known as “urban blending” or “aliasing of trend biases.” This issue arises when the homoge...| AMETSOC