You can use Kubernetes annotations to attach arbitrary non-identifying metadata to objects. Clients such as tools and libraries can retrieve this metadata. Attaching metadata to objects You can use either labels or annotations to attach metadata to Kubernetes objects. Labels can be used to select objects and to find collections of objects that satisfy certain conditions. In contrast, annotations are not used to identify and select objects. The metadata in an annotation can be small or large, ...| Kubernetes
Kubernetes volumes provide a way for containers in a pod to access and share data via the filesystem. There are different kinds of volume that you can use for different purposes, such as: populating a configuration file based on a ConfigMap or a Secret providing some temporary scratch space for a pod sharing a filesystem between two different containers in the same pod sharing a filesystem between two different pods (even if those Pods run on different nodes) durably storing data so that it s...| Kubernetes
Each object in your cluster has a Name that is unique for that type of resource. Every Kubernetes object also has a UID that is unique across your whole cluster. For example, you can only have one Pod named myapp-1234 within the same namespace, but you can have one Pod and one Deployment that are each named myapp-1234. For non-unique user-provided attributes, Kubernetes provides labels and annotations. Names A client-provided string that refers to an object in a resource URL, such as /api/v1/...| Kubernetes
A container image represents binary data that encapsulates an application and all its software dependencies. Container images are executable software bundles that can run standalone and that make very well-defined assumptions about their runtime environment. You typically create a container image of your application and push it to a registry before referring to it in a Pod. This page provides an outline of the container image concept. Note:If you are looking for the container images for a Kub...| Kubernetes
This guide is for application owners who want to build highly available applications, and thus need to understand what types of disruptions can happen to Pods. It is also for cluster administrators who want to perform automated cluster actions, like upgrading and autoscaling clusters. Voluntary and involuntary disruptions Pods do not disappear until someone (a person or a controller) destroys them, or there is an unavoidable hardware or system software error.| Kubernetes
A security context defines privilege and access control settings for a Pod or Container. Security context settings include, but are not limited to: Discretionary Access Control: Permission to access an object, like a file, is based on user ID (UID) and group ID (GID). Security Enhanced Linux (SELinux): Objects are assigned security labels. Running as privileged or unprivileged. Linux Capabilities: Give a process some privileges, but not all the privileges of the root user.| Kubernetes
Expose an application running in your cluster behind a single outward-facing endpoint, even when the workload is split across multiple backends.| Kubernetes
In Kubernetes, a HorizontalPodAutoscaler automatically updates a workload resource (such as a Deployment or StatefulSet), with the aim of automatically scaling the workload to match demand. Horizontal scaling means that the response to increased load is to deploy more Pods. This is different from vertical scaling, which for Kubernetes would mean assigning more resources (for example: memory or CPU) to the Pods that are already running for the workload.| Kubernetes
A Deployment manages a set of Pods to run an application workload, usually one that doesn't maintain state.| Kubernetes