The Kubernetes model for connecting containers Now that you have a continuously running, replicated application you can expose it on a network. Kubernetes assumes that pods can communicate with other pods, regardless of which host they land on. Kubernetes gives every pod its own cluster-private IP address, so you do not need to explicitly create links between pods or map container ports to host ports. This means that containers within a Pod can all reach each other's ports on localhost, and a...| Kubernetes
Each object in your cluster has a Name that is unique for that type of resource. Every Kubernetes object also has a UID that is unique across your whole cluster. For example, you can only have one Pod named myapp-1234 within the same namespace, but you can have one Pod and one Deployment that are each named myapp-1234. For non-unique user-provided attributes, Kubernetes provides labels and annotations. Names A client-provided string that refers to an object in a resource URL, such as /api/v1/...| Kubernetes
Every node in a Kubernetes cluster runs a kube-proxy (unless you have deployed your own alternative component in place of kube-proxy). The kube-proxy component is responsible for implementing a virtual IP mechanism for Services of type other than ExternalName. Each instance of kube-proxy watches the Kubernetes control plane for the addition and removal of Service and EndpointSlice objects. For each Service, kube-proxy calls appropriate APIs (depending on the kube-proxy mode) to configure the ...| Kubernetes
This page shows how to install a custom resource into the Kubernetes API by creating a CustomResourceDefinition. Before you begin You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster. It is recommended to run this tutorial on a cluster with at least two nodes that are not acting as control plane hosts. If you do not already have a cluster, you can create one by using minikube or you can use one of these Kubernetes playgro...| Kubernetes
Kubernetes objects are persistent entities in the Kubernetes system. Kubernetes uses these entities to represent the state of your cluster. Learn about the Kubernetes object model and how to work with these objects.| Kubernetes
The EndpointSlice API is the mechanism that Kubernetes uses to let your Service scale to handle large numbers of backends, and allows the cluster to update its list of healthy backends efficiently.| Kubernetes
Synopsis The Kubernetes network proxy runs on each node. This reflects services as defined in the Kubernetes API on each node and can do simple TCP, UDP, and SCTP stream forwarding or round robin TCP, UDP, and SCTP forwarding across a set of backends. Service cluster IPs and ports are currently found through Docker-links-compatible environment variables specifying ports opened by the service proxy. There is an optional addon that provides cluster DNS for these cluster IPs.| Kubernetes
Kubernetes reserves all labels, annotations and taints in the kubernetes.io and k8s.io namespaces. This document serves both as a reference to the values and as a coordination point for assigning values. Labels, annotations and taints used on API objects apf.kubernetes.io/autoupdate-spec Type: Annotation Example: apf.kubernetes.io/autoupdate-spec: "true" Used on: FlowSchema and PriorityLevelConfiguration Objects If this annotation is set to true on a FlowSchema or PriorityLevelConfiguration, ...| Kubernetes
[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Errata] [Info page] | www.rfc-editor.org
Labels are key/value pairs that are attached to objects such as Pods. Labels are intended to be used to specify identifying attributes of objects that are meaningful and relevant to users, but do not directly imply semantics to the core system. Labels can be used to organize and to select subsets of objects. Labels can be attached to objects at creation time and subsequently added and modified at any time.| Kubernetes
Your workload can discover Services within your cluster using DNS; this page explains how that works.| Kubernetes
This page contains an overview of the various feature gates an administrator can specify on different Kubernetes components. See feature stages for an explanation of the stages for a feature. Overview Feature gates are a set of key=value pairs that describe Kubernetes features. You can turn these features on or off using the --feature-gates command line flag on each Kubernetes component. Each Kubernetes component lets you enable or disable a set of feature gates that are relevant to that comp...| Kubernetes
[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Errata] [Info page] | www.rfc-editor.org
Expose an application running in your cluster behind a single outward-facing endpoint, even when the workload is split across multiple backends.| Kubernetes
A Deployment manages a set of Pods to run an application workload, usually one that doesn't maintain state.| Kubernetes