Each object in your cluster has a Name that is unique for that type of resource. Every Kubernetes object also has a UID that is unique across your whole cluster. For example, you can only have one Pod named myapp-1234 within the same namespace, but you can have one Pod and one Deployment that are each named myapp-1234. For non-unique user-provided attributes, Kubernetes provides labels and annotations. Names A client-provided string that refers to an object in a resource URL, such as /api/v1/...| Kubernetes
In Kubernetes, some objects are owners of other objects. For example, a ReplicaSet is the owner of a set of Pods. These owned objects are dependents of their owner. Ownership is different from the labels and selectors mechanism that some resources also use. For example, consider a Service that creates EndpointSlice objects. The Service uses labels to allow the control plane to determine which EndpointSlice objects are used for that Service.| Kubernetes
Dynamic volume provisioning allows storage volumes to be created on-demand. Without dynamic provisioning, cluster administrators have to manually make calls to their cloud or storage provider to create new storage volumes, and then create PersistentVolume objects to represent them in Kubernetes. The dynamic provisioning feature eliminates the need for cluster administrators to pre-provision storage. Instead, it automatically provisions storage when users create PersistentVolumeClaim objects. ...| Kubernetes
Garbage collection is a collective term for the various mechanisms Kubernetes uses to clean up cluster resources. This allows the clean up of resources like the following: Terminated pods Completed Jobs Objects without owner references Unused containers and container images Dynamically provisioned PersistentVolumes with a StorageClass reclaim policy of Delete Stale or expired CertificateSigningRequests (CSRs) Nodes deleted in the following scenarios: On a cloud when the cluster uses a cloud c...| Kubernetes
A ReplicaSet's purpose is to maintain a stable set of replica Pods running at any given time. Usually, you define a Deployment and let that Deployment manage ReplicaSets automatically.| Kubernetes
This page shows how to run a replicated stateful application using a StatefulSet. This application is a replicated MySQL database. The example topology has a single primary server and multiple replicas, using asynchronous row-based replication. Note:This is not a production configuration. MySQL settings remain on insecure defaults to keep the focus on general patterns for running stateful applications in Kubernetes. Before you begin You need to have a Kubernetes cluster, and the kubectl comma...| Kubernetes
This guide is for application owners who want to build highly available applications, and thus need to understand what types of disruptions can happen to Pods. It is also for cluster administrators who want to perform automated cluster actions, like upgrading and autoscaling clusters. Voluntary and involuntary disruptions Pods do not disappear until someone (a person or a controller) destroys them, or there is an unavoidable hardware or system software error.| Kubernetes
This document describes persistent volumes in Kubernetes. Familiarity with volumes, StorageClasses and VolumeAttributesClasses is suggested. Introduction Managing storage is a distinct problem from managing compute instances. The PersistentVolume subsystem provides an API for users and administrators that abstracts details of how storage is provided from how it is consumed. To do this, we introduce two new API resources: PersistentVolume and PersistentVolumeClaim. A PersistentVolume (PV) is a...| Kubernetes
This page describes the lifecycle of a Pod. Pods follow a defined lifecycle, starting in the Pending phase, moving through Running if at least one of its primary containers starts OK, and then through either the Succeeded or Failed phases depending on whether any container in the Pod terminated in failure. Like individual application containers, Pods are considered to be relatively ephemeral (rather than durable) entities. Pods are created, assigned a unique ID (UID), and scheduled to run on ...| Kubernetes
Your workload can discover Services within your cluster using DNS; this page explains how that works.| Kubernetes
This page contains an overview of the various feature gates an administrator can specify on different Kubernetes components. See feature stages for an explanation of the stages for a feature. Overview Feature gates are a set of key=value pairs that describe Kubernetes features. You can turn these features on or off using the --feature-gates command line flag on each Kubernetes component. Each Kubernetes component lets you enable or disable a set of feature gates that are relevant to that comp...| Kubernetes
Expose an application running in your cluster behind a single outward-facing endpoint, even when the workload is split across multiple backends.| Kubernetes
In Kubernetes, a HorizontalPodAutoscaler automatically updates a workload resource (such as a Deployment or StatefulSet), with the aim of automatically scaling the workload to match demand. Horizontal scaling means that the response to increased load is to deploy more Pods. This is different from vertical scaling, which for Kubernetes would mean assigning more resources (for example: memory or CPU) to the Pods that are already running for the workload.| Kubernetes
A Deployment manages a set of Pods to run an application workload, usually one that doesn't maintain state.| Kubernetes