Each object in your cluster has a Name that is unique for that type of resource. Every Kubernetes object also has a UID that is unique across your whole cluster. For example, you can only have one Pod named myapp-1234 within the same namespace, but you can have one Pod and one Deployment that are each named myapp-1234. For non-unique user-provided attributes, Kubernetes provides labels and annotations. Names A client-provided string that refers to an object in a resource URL, such as /api/v1/...| Kubernetes
This page shows how to run an application using a Kubernetes Deployment object. Objectives Create an nginx deployment. Use kubectl to list information about the deployment. Update the deployment. Before you begin You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster. It is recommended to run this tutorial on a cluster with at least two nodes that are not acting as control plane hosts.| Kubernetes
Garbage collection is a collective term for the various mechanisms Kubernetes uses to clean up cluster resources. This allows the clean up of resources like the following: Terminated pods Completed Jobs Objects without owner references Unused containers and container images Dynamically provisioned PersistentVolumes with a StorageClass reclaim policy of Delete Stale or expired CertificateSigningRequests (CSRs) Nodes deleted in the following scenarios: On a cloud when the cluster uses a cloud c...| Kubernetes
Kubernetes reserves all labels, annotations and taints in the kubernetes.io and k8s.io namespaces. This document serves both as a reference to the values and as a coordination point for assigning values. Labels, annotations and taints used on API objects apf.kubernetes.io/autoupdate-spec Type: Annotation Example: apf.kubernetes.io/autoupdate-spec: "true" Used on: FlowSchema and PriorityLevelConfiguration Objects If this annotation is set to true on a FlowSchema or PriorityLevelConfiguration, ...| Kubernetes
This guide is for application owners who want to build highly available applications, and thus need to understand what types of disruptions can happen to Pods. It is also for cluster administrators who want to perform automated cluster actions, like upgrading and autoscaling clusters. Voluntary and involuntary disruptions Pods do not disappear until someone (a person or a controller) destroys them, or there is an unavoidable hardware or system software error.| Kubernetes
This page describes the lifecycle of a Pod. Pods follow a defined lifecycle, starting in the Pending phase, moving through Running if at least one of its primary containers starts OK, and then through either the Succeeded or Failed phases depending on whether any container in the Pod terminated in failure. Like individual application containers, Pods are considered to be relatively ephemeral (rather than durable) entities. Pods are created, assigned a unique ID (UID), and scheduled to run on ...| Kubernetes
Labels are key/value pairs that are attached to objects such as Pods. Labels are intended to be used to specify identifying attributes of objects that are meaningful and relevant to users, but do not directly imply semantics to the core system. Labels can be used to organize and to select subsets of objects. Labels can be attached to objects at creation time and subsequently added and modified at any time.| Kubernetes
A DaemonSet defines Pods that provide node-local facilities. These might be fundamental to the operation of your cluster, such as a networking helper tool, or be part of an add-on.| Kubernetes
This page contains an overview of the various feature gates an administrator can specify on different Kubernetes components. See feature stages for an explanation of the stages for a feature. Overview Feature gates are a set of key=value pairs that describe Kubernetes features. You can turn these features on or off using the --feature-gates command line flag on each Kubernetes component. Each Kubernetes component lets you enable or disable a set of feature gates that are relevant to that comp...| Kubernetes
In Kubernetes, a HorizontalPodAutoscaler automatically updates a workload resource (such as a Deployment or StatefulSet), with the aim of automatically scaling the workload to match demand. Horizontal scaling means that the response to increased load is to deploy more Pods. This is different from vertical scaling, which for Kubernetes would mean assigning more resources (for example: memory or CPU) to the Pods that are already running for the workload.| Kubernetes
Jobs represent one-off tasks that run to completion and then stop.| Kubernetes
A Deployment manages a set of Pods to run an application workload, usually one that doesn't maintain state.| Kubernetes