Recurrent Neural Networks (RNNs) are a class of neural networks that form associations between sequential data points. For example, the average sales made per month over a certain period. The data has a natural progression from month to month, meaning that the sales for the first month are the only| Machine learning nuggets
The Keras Functional API provides a way to build flexible and complex neural networks in TensorFlow. The Functional API is used to design networks that are not linear. In this article, you will discover that the Keras Functional API is used to create networks that: * Are non-linear. * Share layers. * Have| Machine learning nuggets
Building object detection and image segmentation models is slightly different from other models. Majorly because you have to use specialized models and prepare the data in a particular way. This article will examine how to perform object detection and image segmentation on a custom dataset using the TensorFlow 2 Object| Machine learning nuggets
Training models in Keras is usually done using the fit method. However, you may want more control over the training process. To do that, you'll need to create a custom training loop. This involves setting up a custom function to compute the loss and gradient. This article will walk you| Machine learning nuggets
Building artificial neural networks with TensorFlow and Keras requires understanding some key concepts. After learning these concepts, you'll install TensorFlow and start designing neural networks. This article will cover the concepts you need to comprehend to build neural networks in TensorFlow and Keras. Without further ado, let's get the ball| Machine learning nuggets
In the artificial neural networks with TensorFlow article, we saw how to build deep learning models with TensorFlow and Keras. We covered various concepts that are foundational in training neural networks with TensorFlow. In that article, we used a Pandas DataFrame to build a classification model in Keras. This article| Machine learning nuggets