This section provides reference information for the Kubernetes API. The REST API is the fundamental fabric of Kubernetes. All operations and communications between components, and external user commands are REST API calls that the API Server handles. Consequently, everything in the Kubernetes platform is treated as an API object and has a corresponding entry in the API. The Kubernetes API reference lists the API for Kubernetes version v1.33. For general background information, read The Kubern...| Kubernetes
In robotics and automation, a control loop is a non-terminating loop that regulates the state of a system. Here is one example of a control loop: a thermostat in a room. When you set the temperature, that's telling the thermostat about your desired state. The actual room temperature is the current state. The thermostat acts to bring the current state closer to the desired state, by turning equipment on or off.| Kubernetes
Set up Kubernetes tools on your computer.| Kubernetes
The Kubernetes API is a resource-based (RESTful) programmatic interface provided via HTTP. It supports retrieving, creating, updating, and deleting primary resources via the standard HTTP verbs (POST, PUT, PATCH, DELETE, GET). For some resources, the API includes additional subresources that allow fine-grained authorization (such as separate views for Pod details and log retrievals), and can accept and serve those resources in different representations for convenience or efficiency. Kubernete...| Kubernetes
The kubectl command-line tool supports several different ways to create and manage Kubernetes objects. This document provides an overview of the different approaches. Read the Kubectl book for details of managing objects by Kubectl. Management techniques Warning:A Kubernetes object should be managed using only one technique. Mixing and matching techniques for the same object results in undefined behavior. Management technique Operates on Recommended environment Supported writers Learning curv...| Kubernetes
You can use Kubernetes annotations to attach arbitrary non-identifying metadata to objects. Clients such as tools and libraries can retrieve this metadata. Attaching metadata to objects You can use either labels or annotations to attach metadata to Kubernetes objects. Labels can be used to select objects and to find collections of objects that satisfy certain conditions. In contrast, annotations are not used to identify and select objects. The metadata in an annotation can be small or large, ...| Kubernetes
This page contains an overview of the client libraries for using the Kubernetes API from various programming languages. To write applications using the Kubernetes REST API, you do not need to implement the API calls and request/response types yourself. You can use a client library for the programming language you are using. Client libraries often handle common tasks such as authentication for you. Most client libraries can discover and use the Kubernetes Service Account to authenticate if the...| Kubernetes
Kubernetes provides a command line tool for communicating with a Kubernetes cluster's control plane, using the Kubernetes API. This tool is named kubectl. For configuration, kubectl looks for a file named config in the $HOME/.kube directory. You can specify other kubeconfig files by setting the KUBECONFIG environment variable or by setting the --kubeconfig flag. This overview covers kubectl syntax, describes the command operations, and provides common examples. For details about each command,...| Kubernetes
GETTING STARTED| kubernetes.io
Pods are the smallest deployable units of computing that you can create and manage in Kubernetes. A Pod (as in a pod of whales or pea pod) is a group of one or more containers, with shared storage and network resources, and a specification for how to run the containers. A Pod's contents are always co-located and co-scheduled, and run in a shared context. A Pod models an application-specific "logical host": it contains one or more application containers which are relatively tightly coupled.| Kubernetes
Finalizers are namespaced keys that tell Kubernetes to wait until specific conditions are met before it fully deletes resources marked for deletion. Finalizers alert controllers to clean up resources the deleted object owned. When you tell Kubernetes to delete an object that has finalizers specified for it, the Kubernetes API marks the object for deletion by populating .metadata.deletionTimestamp, and returns a 202 status code (HTTP "Accepted"). The target object remains in a terminating stat...| Kubernetes
Pod is a collection of containers that can run on a host.| Kubernetes
Each object in your cluster has a Name that is unique for that type of resource. Every Kubernetes object also has a UID that is unique across your whole cluster. For example, you can only have one Pod named myapp-1234 within the same namespace, but you can have one Pod and one Deployment that are each named myapp-1234. For non-unique user-provided attributes, Kubernetes provides labels and annotations. Names A client-provided string that refers to an object in a resource URL, such as /api/v1/...| Kubernetes
In Kubernetes, namespaces provide a mechanism for isolating groups of resources within a single cluster. Names of resources need to be unique within a namespace, but not across namespaces. Namespace-based scoping is applicable only for namespaced objects (e.g. Deployments, Services, etc.) and not for cluster-wide objects (e.g. StorageClass, Nodes, PersistentVolumes, etc.). When to Use Multiple Namespaces Namespaces are intended for use in environments with many users spread across multiple te...| Kubernetes
In Kubernetes, some objects are owners of other objects. For example, a ReplicaSet is the owner of a set of Pods. These owned objects are dependents of their owner. Ownership is different from the labels and selectors mechanism that some resources also use. For example, consider a Service that creates EndpointSlice objects. The Service uses labels to allow the control plane to determine which EndpointSlice objects are used for that Service.| Kubernetes
The Kubernetes API lets you query and manipulate the state of objects in Kubernetes. The core of Kubernetes' control plane is the API server and the HTTP API that it exposes. Users, the different parts of your cluster, and external components all communicate with one another through the API server.| Kubernetes
This document highlights and consolidates configuration best practices that are introduced throughout the user guide, Getting Started documentation, and examples. This is a living document. If you think of something that is not on this list but might be useful to others, please don't hesitate to file an issue or submit a PR. General Configuration Tips When defining configurations, specify the latest stable API version. Configuration files should be stored in version control before being pushe...| Kubernetes
You can visualize and manage Kubernetes objects with more tools than kubectl and the dashboard. A common set of labels allows tools to work interoperably, describing objects in a common manner that all tools can understand. In addition to supporting tooling, the recommended labels describe applications in a way that can be queried. The metadata is organized around the concept of an application. Kubernetes is not a platform as a service (PaaS) and doesn't have or enforce a formal notion of an ...| Kubernetes
Labels are key/value pairs that are attached to objects such as Pods. Labels are intended to be used to specify identifying attributes of objects that are meaningful and relevant to users, but do not directly imply semantics to the core system. Labels can be used to organize and to select subsets of objects. Labels can be attached to objects at creation time and subsequently added and modified at any time.| Kubernetes
A Deployment manages a set of Pods to run an application workload, usually one that doesn't maintain state.| Kubernetes