Automakers contemplating whether a part is cold stamped or hot formed must consider numerous factors. This blog covers some important considerations related to welding these materials for automotive applications.| AHSS Guidelines
Contributed by Menachem Kimchi, Ohio State University Advance High-Strength Steels (AHSS) have been resistance welded in automotive production lines in the last few years. However, the high strength and hardness can be expected to affect spot weld failure modes during the typical peel testing and chisel testing performed for weld quality evaluation. A well-established industry […]| AHSS Guidelines
Steel E-Motive represents a fully autonomous ride sharing vehicle concept showcasing the strength and durability of steel with a critical focus on sustainability for reaching net zero emissions targets. The results are comfortable, safe and affordable body structures that support automakers in the continued development of Mobility as a Service (MaaS) ride sharing models. The […]| AHSS Guidelines
Part Integration with an innovative battery housing design and laser welded blank door ring can be used to reduce both mass and cost.| AHSS Guidelines
Reducing the number of individual parts within an automotive body structure, through part integration, can yield further cost, weight, and sustainability benefits without compromising performance.| AHSS Guidelines
Key materials characteristics for formed parts include strength, thickness, and corrosion protection. Tailored products provide opportunities to place these attributes where they are most needed for part function, and remove weight that does not contribute to part performance.| AHSS Guidelines
The Resistance Spot Welding (RSW) process is often used as a model to explain the fundamental concepts behind most resistance welding processes. If the sheets are steel, the resistance to the flow of current of the sheets will be much higher than the copper electrodes, so the steel will get hot while the electrodes remain relatively cool.| AHSS Guidelines
Resistance welding processes represent a family of industrial welding processes that produce the heat required for welding through what is known as joule (J = I Rt) heating.| AHSS Guidelines
Evaluating sheet metal formability using computer software has been in common industrial use for more than two decades. The current sheet metal forming programs are part of the transition to virtual manufacturing that includes analysis of casting solidification and rolling at the metal production facility, welding, moulding of sheet/fiber composites, automation, and other manufacturing processes. Computer simulation of sheet metal forming is known by several terms, including computerized form...| AHSS Guidelines
The Steel E-Motive autonomous vehicle program–commissioned by WorldAutoSteel in partnership with Ricardo plc–has developed the world’s first fully autonomous electric vehicle body structure concept purpose-fit for ride-sharing. This global steel industry initiative showcases the strength and durability of steel with an eye on playing a pivotal role in reaching net zero emissions targets.| AHSS Guidelines
WorldAutoSteel’s global automotive steel suppliers have conducted extensive research that illuminates a path forward for future mobility. The Steel E-Motive concept – borne of this research – can be a catalyst for reaching the Net Zero goal.| AHSS Guidelines
This month's blog (on the Steel E-Motive site) concentrates on the unique closure design developed for Steel E-Motive. A B-Pillar integrated configuration (red component on the right side door in the animation below), which specifies Advanced High-Strength Steels in the A- and B-Pillars.| AHSS Guidelines
Autonomous Vehicle Safety is addressed by Steel E-Motive, one of the first robotaxis to fully detail and report compliance to global high-speed safety standards. In developing Steel E-Motive, we targeted conformity with seven US crash standards, including US NCAP (New Car Assessment Program) IIHS and FMVSS (Federal Motor Vehicle Safety Standards) front, side, and rear impact tests while also assessing performance against worldwide protocols, including NHTSA (US) Euro NCAP (European) and China...| AHSS Guidelines
Car body-in-white (BIW) structures, such as pillars and rails, are increasingly made of complex stack-ups of advanced high-strength steels (AHSS) for vehicle lightweighting to achieve improved fuel efficiency and crashworthiness. Complex stack-ups comprise more than two sheets with similar/dissimilar steels and nonequal sheet thickness.| AHSS Guidelines
There is an increased need to join magnesium alloys to high-strength steels using resistance spot selding to create multi-material lightweight body structures for fuel-efficient vehicles.| AHSS Guidelines