What is Kubernetes Operator? Kubernetes API design. Kubernetes Custom Resources and CRDs explained.| iximiuz.com
This page explains how to add versioning information to CustomResourceDefinitions, to indicate the stability level of your CustomResourceDefinitions or advance your API to a new version with conversion between API representations. It also describes how to upgrade an object from one version to another. Before you begin You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster. It is recommended to run this tutorial on a cluster...| Kubernetes
The Common Expression Language (CEL) is used in the Kubernetes API to declare validation rules, policy rules, and other constraints or conditions. CEL expressions are evaluated directly in the API server, making CEL a convenient alternative to out-of-process mechanisms, such as webhooks, for many extensibility use cases. Your CEL expressions continue to execute so long as the control plane's API server component remains available. Language overview The CEL language has a straightforward synta...| Kubernetes
The Kubernetes API is a resource-based (RESTful) programmatic interface provided via HTTP. It supports retrieving, creating, updating, and deleting primary resources via the standard HTTP verbs (POST, PUT, PATCH, DELETE, GET). For some resources, the API includes additional subresources that allow fine-grained authorization (such as separate views for Pod details and log retrievals), and can accept and serve those resources in different representations for convenience or efficiency. Kubernete...| Kubernetes
Composite resource definitions (XRDs) define the schema for a custom API. Users create composite resources (XRs) and Claims (XCs) using the API schema defined by an XRD. Note Read the composite …| Crossplane Documentation
Configuring the aggregation layer allows the Kubernetes apiserver to be extended with additional APIs, which are not part of the core Kubernetes APIs. Before you begin You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster. It is recommended to run this tutorial on a cluster with at least two nodes that are not acting as control plane hosts. If you do not already have a cluster, you can create one by using minikube or you c...| Kubernetes
FEATURE STATE: Kubernetes v1.22 [stable] (enabled by default: true) Kubernetes supports multiple appliers collaborating to manage the fields of a single object. Server-Side Apply provides an optional mechanism for your cluster's control plane to track changes to an object's fields. At the level of a specific resource, Server-Side Apply records and tracks information about control over the fields of that object. Server-Side Apply helps users and controllers manage their resources through decla...| Kubernetes
Guide on how to write and package a Kratix Promise| docs.kratix.io
Make your HTTP (or HTTPS) network service available using a protocol-aware configuration mechanism, that understands web concepts like URIs, hostnames, paths, and more. The Ingress concept lets you map traffic to different backends based on rules you define via the Kubernetes API.| Kubernetes
This page describes the deployment scaling behavior of KEDA.| KEDA
Documentation for the Kratix Promise Custom Resource| docs.kratix.io
Introduction to ApplicationSet controller¶| argo-cd.readthedocs.io
Composite resource definitions (XRDs) define the schema for a custom API. Users create composite resources (XRs) and Claims (XCs) using the API schema defined by an XRD. Note Read the composite …| Crossplane Documentation
This page shows how to install a custom resource into the Kubernetes API by creating a CustomResourceDefinition. Before you begin You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster. It is recommended to run this tutorial on a cluster with at least two nodes that are not acting as control plane hosts. If you do not already have a cluster, you can create one by using minikube or you can use one of these Kubernetes playgro...| Kubernetes
Explore Crossplane 1.15! Discover enhanced CLI, improved DevEx for platform engineers, and new features for cloud infrastructure management.| The Crossplane Blog
The Kubernetes API lets you query and manipulate the state of objects in Kubernetes. The core of Kubernetes' control plane is the API server and the HTTP API that it exposes. Users, the different parts of your cluster, and external components all communicate with one another through the API server.| Kubernetes
In Kubernetes, a VolumeSnapshot represents a snapshot of a volume on a storage system. This document assumes that you are already familiar with Kubernetes persistent volumes. Introduction Similar to how API resources PersistentVolume and PersistentVolumeClaim are used to provision volumes for users and administrators, VolumeSnapshotContent and VolumeSnapshot API resources are provided to create volume snapshots for users and administrators. A VolumeSnapshotContent is a snapshot taken from a v...| Kubernetes
Kubernetes reserves all labels, annotations and taints in the kubernetes.io and k8s.io namespaces. This document serves both as a reference to the values and as a coordination point for assigning values. Labels, annotations and taints used on API objects apf.kubernetes.io/autoupdate-spec Type: Annotation Example: apf.kubernetes.io/autoupdate-spec: "true" Used on: FlowSchema and PriorityLevelConfiguration Objects If this annotation is set to true on a FlowSchema or PriorityLevelConfiguration, ...| Kubernetes
As the Kubernetes API evolves, APIs are periodically reorganized or upgraded. When APIs evolve, the old API is deprecated and eventually removed. This page contains information you need to know when migrating from deprecated API versions to newer and more stable API versions. Removed APIs by release v1.32 The v1.32 release will stop serving the following deprecated API versions: Flow control resources The flowcontrol.apiserver.k8s.io/v1beta3 API version of FlowSchema and PriorityLevelConfigur...| Kubernetes
FEATURE STATE: Kubernetes v1.21 [stable] This page shows how to limit the number of concurrent disruptions that your application experiences, allowing for higher availability while permitting the cluster administrator to manage the clusters nodes. Before you begin Your Kubernetes server must be at or later than version v1.21. To check the version, enter kubectl version. You are the owner of an application running on a Kubernetes cluster that requires high availability.| Kubernetes
Role-based access control (RBAC) is a method of regulating access to computer or network resources based on the roles of individual users within your organization. RBAC authorization uses the rbac.authorization.k8s.io API group to drive authorization decisions, allowing you to dynamically configure policies through the Kubernetes API. To enable RBAC, start the API server with the --authorization-config flag set to a file that includes the RBAC authorizer; for example: apiVersion: apiserver.| Kubernetes
In Kubernetes 1.26, the 1st alpha release of validating admission policies is available! Validating admission policies use the Common Expression Language (CEL) to offer a declarative, in-process alternative to validating admission webhooks. CEL was first introduced to Kubernetes for the Validation rules for CustomResourceDefinitions. This enhancement expands the use of CEL in Kubernetes to support a far wider range of admission use cases. Admission webhooks can be burdensome to develop and op...| Kubernetes
Custom resources are extensions of the Kubernetes API. This page discusses when to add a custom resource to your Kubernetes cluster and when to use a standalone service. It describes the two methods for adding custom resources and how to choose between them. Custom resources A resource is an endpoint in the Kubernetes API that stores a collection of API objects of a certain kind; for example, the built-in pods resource contains a collection of Pod objects.| Kubernetes
This page contains an overview of the various feature gates an administrator can specify on different Kubernetes components. See feature stages for an explanation of the stages for a feature. Overview Feature gates are a set of key=value pairs that describe Kubernetes features. You can turn these features on or off using the --feature-gates command line flag on each Kubernetes component. Each Kubernetes component lets you enable or disable a set of feature gates that are relevant to that comp...| Kubernetes
Expose an application running in your cluster behind a single outward-facing endpoint, even when the workload is split across multiple backends.| Kubernetes