Different ways to change the behavior of your Kubernetes cluster.| Kubernetes
The Kubernetes API is a resource-based (RESTful) programmatic interface provided via HTTP. It supports retrieving, creating, updating, and deleting primary resources via the standard HTTP verbs (POST, PUT, PATCH, DELETE, GET). For some resources, the API includes additional subresources that allow fine-grained authorization (such as separate views for Pod details and log retrievals), and can accept and serve those resources in different representations for convenience or efficiency. Kubernete...| Kubernetes
Configuring the aggregation layer allows the Kubernetes apiserver to be extended with additional APIs, which are not part of the core Kubernetes APIs. Before you begin You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster. It is recommended to run this tutorial on a cluster with at least two nodes that are not acting as control plane hosts. If you do not already have a cluster, you can create one by using minikube or you c...| Kubernetes
When several users or teams share a cluster with a fixed number of nodes, there is a concern that one team could use more than its fair share of resources. Resource quotas are a tool for administrators to address this concern. A resource quota, defined by a ResourceQuota object, provides constraints that limit aggregate resource consumption per namespace. A ResourceQuota can also limit the quantity of objects that can be created in a namespace by API kind, as well as the total amount of infra...| Kubernetes
Kubernetes offers two distinct ways for clients that run within your cluster, or that otherwise have a relationship to your cluster's control plane to authenticate to the API server. A service account provides an identity for processes that run in a Pod, and maps to a ServiceAccount object. When you authenticate to the API server, you identify yourself as a particular user. Kubernetes recognises the concept of a user, however, Kubernetes itself does not have a User API.| Kubernetes
Details of Kubernetes authorization mechanisms and supported authorization modes.| Kubernetes
With Kubernetes 1.30, we (SIG Auth) are moving Structured Authorization Configuration to beta. Today's article is about authorization: deciding what someone can and cannot access. Check a previous article from yesterday to find about what's new in Kubernetes v1.30 around authentication (finding out who's performing a task, and checking that they are who they say they are). Introduction Kubernetes continues to evolve to meet the intricate requirements of system administrators and developers al...| Kubernetes
Editors: Amit Dsouza, Frederick Kautz, Kristin Martin, Abigail McCarthy, Natali Vlatko Announcing the release of Kubernetes v1.30: Uwubernetes, the cutest release! Similar to previous releases, the release of Kubernetes v1.30 introduces new stable, beta, and alpha features. The consistent delivery of top-notch releases underscores the strength of our development cycle and the vibrant support from our community. This release consists of 45 enhancements. Of those enhancements, 17 have graduated...| Kubernetes
A quick look: exciting changes in Kubernetes v1.30 It's a new year and a new Kubernetes release. We're halfway through the release cycle and have quite a few interesting and exciting enhancements coming in v1.30. From brand new features in alpha, to established features graduating to stable, to long-awaited improvements, this release has something for everyone to pay attention to! To tide you over until the official release, here's a sneak peek of the enhancements we're most excited about in ...| Kubernetes
This page provides an overview of controlling access to the Kubernetes API. Users access the Kubernetes API using kubectl, client libraries, or by making REST requests. Both human users and Kubernetes service accounts can be authorized for API access. When a request reaches the API, it goes through several stages, illustrated in the following diagram: Transport security By default, the Kubernetes API server listens on port 6443 on the first non-localhost network interface, protected by TLS.| Kubernetes
This page provides an overview of authentication. Users in Kubernetes All Kubernetes clusters have two categories of users: service accounts managed by Kubernetes, and normal users. It is assumed that a cluster-independent service manages normal users in the following ways: an administrator distributing private keys a user store like Keystone or Google Accounts a file with a list of usernames and passwords In this regard, Kubernetes does not have objects which represent normal user accounts.| Kubernetes
A Secret is an object that contains a small amount of sensitive data such as a password, a token, or a key. Such information might otherwise be put in a Pod specification or in a container image. Using a Secret means that you don't need to include confidential data in your application code. Because Secrets can be created independently of the Pods that use them, there is less risk of the Secret (and its data) being exposed during the workflow of creating, viewing, and editing Pods.| Kubernetes
This page contains an overview of the various feature gates an administrator can specify on different Kubernetes components. See feature stages for an explanation of the stages for a feature. Overview Feature gates are a set of key=value pairs that describe Kubernetes features. You can turn these features on or off using the --feature-gates command line flag on each Kubernetes component. Each Kubernetes component lets you enable or disable a set of feature gates that are relevant to that comp...| Kubernetes