[Updated on 2020-01-09: add a new section on Contrastive Predictive Coding]. [Updated on 2020-04-13: add a “Momentum Contrast” section on MoCo, SimCLR and CURL.] [Updated on 2020-07-08: add a “Bisimulation” section on DeepMDP and DBC.] [Updated on 2020-09-12: add MoCo V2 and BYOL in the “Momentum Contrast” section.] [Updated on 2021-05-31: remove section on “Momentum Contrast” and add a pointer to a full post on “Contrastive Representation Learning”] Given a task and enoug...| lilianweng.github.io
In Robotics, one of the hardest problems is how to make your model transfer to the real world. Due to the sample inefficiency of deep RL algorithms and the cost of data collection on real robots, we often need to train models in a simulator which theoretically provides an infinite amount of data. However, the reality gap between the simulator and the physical world often leads to failure when working with physical robots.| lilianweng.github.io
[Updated on 2018-10-28: Add Pointer Network and the link to my implementation of Transformer.] [Updated on 2018-11-06: Add a link to the implementation of Transformer model.] [Updated on 2018-11-18: Add Neural Turing Machines.] [Updated on 2019-07-18: Correct the mistake on using the term “self-attention” when introducing the show-attention-tell paper; moved it to Self-Attention section.] [Updated on 2020-04-07: A follow-up post on improved Transformer models is here.] Attention is, to so...| lilianweng.github.io
[Updated on 2018-06-30: add two new policy gradient methods, SAC and D4PG.] [Updated on 2018-09-30: add a new policy gradient method, TD3.] [Updated on 2019-02-09: add SAC with automatically adjusted temperature]. [Updated on 2019-06-26: Thanks to Chanseok, we have a version of this post in Korean]. [Updated on 2019-09-12: add a new policy gradient method SVPG.] [Updated on 2019-12-22: add a new policy gradient method IMPALA.] [Updated on 2020-10-15: add a new policy gradient method PPG & som...| lilianweng.github.io
[Updated on 2018-09-30: thanks to Yoonju, we have this post translated in Korean!] [Updated on 2019-04-18: this post is also available on arXiv.] Generative adversarial network (GAN) has shown great results in many generative tasks to replicate the real-world rich content such as images, human language, and music. It is inspired by game theory: two models, a generator and a critic, are competing with each other while making each other stronger at the same time.| lilianweng.github.io