Which welding process is most sustainable for EV battery enclosures? Our life cycle assessment compares emissions, energy use, and materials across four joining methods.Compare welding methods for EV battery enclosures using LCA to determine environmental impacts and improve sustainable automotive manufacturing.| AHSS Guidelines
Vehicle programs must balance performance, safety, fuel efficiency, affordability and the environment, while maintaining designs that are appealing to customers. Use of higher strength steels allows for a reduction in the sheet metal thickness and in turn vehicle mass. The increased ductility offered by Advanced High Strength Steels facilitates part consolidation also contributing to lower weight […]| AHSS Guidelines
Manufacturers embrace Advanced High Strength Steels as a cost-effective way to satisfy functional and regulatory requirements. The following are just a few examples where automakers have attributed improved performance and lightweighting due to the use of these advanced steels. KIA EV9 The Kia EV9, Kia’s first three-row electric flagship SUV, is based on the Electric […]| AHSS Guidelines
Our most recent Autonomous vehicle engineering project, Steel E-Motive, was designed to unveil and meet the challenges of future autonomous vehicles.| AHSS Guidelines
Steel E-Motive represents a fully autonomous ride sharing vehicle concept showcasing the strength and durability of steel with a critical focus on sustainability for reaching net zero emissions targets. The results are comfortable, safe and affordable body structures that support automakers in the continued development of Mobility as a Service (MaaS) ride sharing models. The […]| AHSS Guidelines
Related Posts Filter by Post type Post Page Category homepage-featured-top main-blog AHSS Blog Joining Joining Dissimilar Materials Resistance Welding Processes Resistance Spot Welding RSW of Dissimilar Steel RSW Modelling and Performance Production Managers Tool & Die Professionals Steel Grades 1stGen AHSS 3rdGen AHSS 2ndGen AHSS Resistance Welding Steel to Aluminium Laser Welding Arc Welding Sort […]| AHSS Guidelines
Part Integration with an innovative battery housing design and laser welded blank door ring can be used to reduce both mass and cost.| AHSS Guidelines
Reducing the number of individual parts within an automotive body structure, through part integration, can yield further cost, weight, and sustainability benefits without compromising performance.| AHSS Guidelines
Key materials characteristics for formed parts include strength, thickness, and corrosion protection. Tailored products provide opportunities to place these attributes where they are most needed for part function, and remove weight that does not contribute to part performance.| AHSS Guidelines
Martensitic steel grades provide a cold formed alternative to hot formed press hardening steels. Not all product shapes can be cold formed. For those shapes where forming at ambient temperatures is possible, design and process strategies must address the springback which comes with the high strength levels, as well as eliminate the risk of delayed fracture.| AHSS Guidelines
Future Mobility describes the revolution that’s already begun. We’re rethinking transportation from the movement of a vehicle to a more efficient concept for moving people and things. We’re about to discover the social advantages of connected, autonomous, shared and electric vehicles. And we’re completely changing the way we view transportation.| AHSS Guidelines
The Steel E-Motive autonomous vehicle program–commissioned by WorldAutoSteel in partnership with Ricardo plc–has developed the world’s first fully autonomous electric vehicle body structure concept purpose-fit for ride-sharing. This global steel industry initiative showcases the strength and durability of steel with an eye on playing a pivotal role in reaching net zero emissions targets.| AHSS Guidelines
WorldAutoSteel’s global automotive steel suppliers have conducted extensive research that illuminates a path forward for future mobility. The Steel E-Motive concept – borne of this research – can be a catalyst for reaching the Net Zero goal.| AHSS Guidelines
This month's blog (on the Steel E-Motive site) concentrates on the unique closure design developed for Steel E-Motive. A B-Pillar integrated configuration (red component on the right side door in the animation below), which specifies Advanced High-Strength Steels in the A- and B-Pillars.| AHSS Guidelines
Autonomous Vehicle Safety is addressed by Steel E-Motive, one of the first robotaxis to fully detail and report compliance to global high-speed safety standards. In developing Steel E-Motive, we targeted conformity with seven US crash standards, including US NCAP (New Car Assessment Program) IIHS and FMVSS (Federal Motor Vehicle Safety Standards) front, side, and rear impact tests while also assessing performance against worldwide protocols, including NHTSA (US) Euro NCAP (European) and China...| AHSS Guidelines