In this article we continue our examination of the AGILE statistical approach to AB testing with a more in-depth look into futility stopping, or stopping early for lack of positive effect (lack of superiority). We’ll cover why such rules are helpful and how they help boost the ROI of A/B testing, why a rigorous statistical rule is required in order to stop early when results are unpromising or negative and how it works in practice. We’re reviewing this from the standpoint of the AGILE me...| Blog for Web Analytics, Statistics and Data-Driven Internet Marketing | Analy...
What is Statistical Power?| Blog for Web Analytics, Statistics and Data-Driven Internet Marketing | Analy...
What is the goal of A/B testing? How long should I run a test for? Is it better to run many quick tests, or one long one? How do I know when is a good time to stop testing? How do I choose the significance threshold for a test? Is there something special about 95%? Does it make sense to run tests at 50% significance? How about 5%? What is the cost of adding more variants to test?| Blog for Web Analytics, Statistics and Data-Driven Internet Marketing | Analy...
This is a comprehensive guide to the different types of costs and benefits, risks and rewards related to A/B testing. Understanding them in detail should be valuable to A/B testers and businesses considering whether to engage in A/B testing or not, what to A/B test and what not to test, etc. As far as I am aware, this is the first attempt to systematically review all the different factors contributing to the return on investment from the process of A/B testing. Here I will cover A/B testing m...| Blog for Web Analytics, Statistics and Data-Driven Internet Marketing | Analy...
The question of whether one should run A/B tests (a.k.a online controlled experiments) using one-tailed versus two-tailed tests of significance was something I didn’t even consider important, as I thought the answer (one-tailed) was so self-evident that no discussion was necessary.| Blog for Web Analytics, Statistics and Data-Driven Internet Marketing | Analy...
Short, understandable, yet accurate explanation of p-values and confidence intervals. Starting from the problem of random variability and building up with minimal jargon, this is the most accessible introduction to these basic statistical concepts. Understand the meaning and utility of confidence intervals and p-values in statistical hypothesis testing and estimation.| Blog for Web Analytics, Statistics and Data-Driven Internet Marketing | Analy...