Get an expert-vetted playbook with a tested system for shipping SaaS products. Go live with confidence, control, and a clear plan.| Freemius Blog
In the world of cloud computing and container orchestration, Kubernetes and AWS (Amazon Web Services) are two prominent players that often come up in discussions. While both are essential for modern application deployment and management, they serve different purposes and have unique characteristics. This blog aims to explore the similarities and differences between Kubernetes and […]| Collabnix
The Common Expression Language (CEL) is used in the Kubernetes API to declare validation rules, policy rules, and other constraints or conditions. CEL expressions are evaluated directly in the API server, making CEL a convenient alternative to out-of-process mechanisms, such as webhooks, for many extensibility use cases. Your CEL expressions continue to execute so long as the control plane's API server component remains available. Language overview The CEL language has a straightforward synta...| Kubernetes
Ahmet Alp Balkan and Ronak Nathani are software engineers at LinkedIn compute infrastructure team running the Kubernetes platform for LinkedIn and they joined us today to talk about how they run Kubernetes at scale and what they learned along the way.| kubernetespodcast.com
Explore what a Kubernetes cluster is & how it orchestrates containerized applications for scalability, flexibility & resilience in cloud environments.| Whizlabs Blog
In robotics and automation, a control loop is a non-terminating loop that regulates the state of a system. Here is one example of a control loop: a thermostat in a room. When you set the temperature, that's telling the thermostat about your desired state. The actual room temperature is the current state. The thermostat acts to bring the current state closer to the desired state, by turning equipment on or off.| Kubernetes
When several users or teams share a cluster with a fixed number of nodes, there is a concern that one team could use more than its fair share of resources. Resource quotas are a tool for administrators to address this concern. A resource quota, defined by a ResourceQuota object, provides constraints that limit aggregate resource consumption per namespace. A ResourceQuota can also limit the quantity of objects that can be created in a namespace by API kind, as well as the total amount of infra...| Kubernetes
Kubernetes offers two distinct ways for clients that run within your cluster, or that otherwise have a relationship to your cluster's control plane to authenticate to the API server. A service account provides an identity for processes that run in a Pod, and maps to a ServiceAccount object. When you authenticate to the API server, you identify yourself as a particular user. Kubernetes recognises the concept of a user, however, Kubernetes itself does not have a User API.| Kubernetes
Pods are the smallest deployable units of computing that you can create and manage in Kubernetes. A Pod (as in a pod of whales or pea pod) is a group of one or more containers, with shared storage and network resources, and a specification for how to run the containers. A Pod's contents are always co-located and co-scheduled, and run in a shared context. A Pod models an application-specific "logical host": it contains one or more application containers which are relatively tightly coupled.| Kubernetes
API-initiated eviction is the process by which you use the Eviction API to create an Eviction object that triggers graceful pod termination. You can request eviction by calling the Eviction API directly, or programmatically using a client of the API server, like the kubectl drain command. This creates an Eviction object, which causes the API server to terminate the Pod. API-initiated evictions respect your configured PodDisruptionBudgets and terminationGracePeriodSeconds. Using the API to cre...| Kubernetes
Using kubeadm, you can create a minimum viable Kubernetes cluster that conforms to best practices. In fact, you can use kubeadm to set up a cluster that will pass the Kubernetes Conformance tests. kubeadm also supports other cluster lifecycle functions, such as bootstrap tokens and cluster upgrades. The kubeadm tool is good if you need: A simple way for you to try out Kubernetes, possibly for the first time. A way for existing users to automate setting up a cluster and test their application.| Kubernetes
Node authorization is a special-purpose authorization mode that specifically authorizes API requests made by kubelets. Overview The Node authorizer allows a kubelet to perform API operations. This includes: Read operations: services endpoints nodes pods secrets, configmaps, persistent volume claims and persistent volumes related to pods bound to the kubelet's node FEATURE STATE: Kubernetes v1.32 [beta] (enabled by default: true) When the AuthorizeNodeWithSelectors feature is enabled (along wi...| Kubernetes
Kubernetes is a portable, extensible, open source platform for managing containerized workloads and services, that facilitates both declarative configuration and automation. It has a large, rapidly growing ecosystem. Kubernetes services, support, and tools are widely available.| Kubernetes
FEATURE STATE: Kubernetes v1.29 [stable] Controlling the behavior of the Kubernetes API server in an overload situation is a key task for cluster administrators. The kube-apiserver has some controls available (i.e. the --max-requests-inflight and --max-mutating-requests-inflight command-line flags) to limit the amount of outstanding work that will be accepted, preventing a flood of inbound requests from overloading and potentially crashing the API server, but these flags are not enough to ens...| Kubernetes
Production-Grade Container Orchestration| Kubernetes
This page describes running Kubernetes across multiple zones. Background Kubernetes is designed so that a single Kubernetes cluster can run across multiple failure zones, typically where these zones fit within a logical grouping called a region. Major cloud providers define a region as a set of failure zones (also called availability zones) that provide a consistent set of features: within a region, each zone offers the same APIs and services.| Kubernetes
All of the APIs in Kubernetes that let you write persistent API resource data support at-rest encryption. For example, you can enable at-rest encryption for Secrets. This at-rest encryption is additional to any system-level encryption for the etcd cluster or for the filesystem(s) on hosts where you are running the kube-apiserver. This page shows how to enable and configure encryption of API data at rest. Note:This task covers encryption for resource data stored using the Kubernetes API.| Kubernetes
This page describes the lifecycle of a Pod. Pods follow a defined lifecycle, starting in the Pending phase, moving through Running if at least one of its primary containers starts OK, and then through either the Succeeded or Failed phases depending on whether any container in the Pod terminated in failure. Like individual application containers, Pods are considered to be relatively ephemeral (rather than durable) entities. Pods are created, assigned a unique ID (UID), and scheduled to run on ...| Kubernetes
This page provides an overview of admission controllers. An admission controller is a piece of code that intercepts requests to the Kubernetes API server prior to persistence of the resource, but after the request is authenticated and authorized. Several important features of Kubernetes require an admission controller to be enabled in order to properly support the feature. As a result, a Kubernetes API server that is not properly configured with the right set of admission controllers is an in...| Kubernetes
An overview of the key components that make up a Kubernetes cluster.| Kubernetes