This page covers how to customize the components that kubeadm deploys. For control plane components you can use flags in the ClusterConfiguration structure or patches per-node. For the kubelet and kube-proxy you can use KubeletConfiguration and KubeProxyConfiguration, accordingly. All of these options are possible via the kubeadm configuration API. For more details on each field in the configuration you can navigate to our API reference pages. Note:Customizing the CoreDNS deployment of kubead...| Kubernetes
A HorizontalPodAutoscaler (HPA for short) automatically updates a workload resource (such as a Deployment or StatefulSet), with the aim of automatically scaling the workload to match demand. Horizontal scaling means that the response to increased load is to deploy more Pods. This is different from vertical scaling, which for Kubernetes would mean assigning more resources (for example: memory or CPU) to the Pods that are already running for the workload.| Kubernetes
Modify resource configurations during admission or retroactively against existing resources.| Kyverno
In robotics and automation, a control loop is a non-terminating loop that regulates the state of a system. Here is one example of a control loop: a thermostat in a room. When you set the temperature, that's telling the thermostat about your desired state. The actual room temperature is the current state. The thermostat acts to bring the current state closer to the desired state, by turning equipment on or off.| Kubernetes
Kubernetes offers two distinct ways for clients that run within your cluster, or that otherwise have a relationship to your cluster's control plane to authenticate to the API server. A service account provides an identity for processes that run in a Pod, and maps to a ServiceAccount object. When you authenticate to the API server, you identify yourself as a particular user. Kubernetes recognises the concept of a user, however, Kubernetes itself does not have a User API.| Kubernetes
Google has been running containerized workloads in production for more than a decade. Whether it's service jobs like web front-ends and stateful servers, infrastructure systems like Bigtable and Spanner, or batch frameworks like MapReduce and Millwheel, virtually everything at Google runs as a container. Today, we took the wraps off of Borg, Google’s long-rumored internal container-oriented cluster-management system, publishing details at the academic computer systems conference Eurosys. Yo...| Kubernetes
Application logs can help you understand what is happening inside your application. The logs are particularly useful for debugging problems and monitoring cluster activity. Most modern applications have some kind of logging mechanism. Likewise, container engines are designed to support logging. The easiest and most adopted logging method for containerized applications is writing to standard output and standard error streams. However, the native functionality provided by a container engine or ...| Kubernetes
Node affinity is a property of Pods that attracts them to a set of nodes (either as a preference or a hard requirement). Taints are the opposite -- they allow a node to repel a set of pods. Tolerations are applied to pods. Tolerations allow the scheduler to schedule pods with matching taints. Tolerations allow scheduling but don't guarantee scheduling: the scheduler also evaluates other parameters as part of its function.| Kubernetes
Kubernetes volumes provide a way for containers in a pod to access and share data via the filesystem. There are different kinds of volume that you can use for different purposes, such as: populating a configuration file based on a ConfigMap or a Secret providing some temporary scratch space for a pod sharing a filesystem between two different containers in the same pod sharing a filesystem between two different pods (even if those Pods run on different nodes) durably storing data so that it s...| Kubernetes
A ConfigMap is an API object used to store non-confidential data in key-value pairs. Pods can consume ConfigMaps as environment variables, command-line arguments, or as configuration files in a volume. A ConfigMap allows you to decouple environment-specific configuration from your container images, so that your applications are easily portable. Caution:ConfigMap does not provide secrecy or encryption. If the data you want to store are confidential, use a Secret rather than a ConfigMap, or use...| Kubernetes
The architectural concepts behind Kubernetes.| Kubernetes
Windows applications constitute a large portion of the services and applications that run in many organizations. Windows containers provide a way to encapsulate processes and package dependencies, making it easier to use DevOps practices and follow cloud native patterns for Windows applications. Organizations with investments in Windows-based applications and Linux-based applications don't have to look for separate orchestrators to manage their workloads, leading to increased operational effi...| Kubernetes
FEATURE STATE: Kubernetes v1.29 [beta] Sidecar containers are the secondary containers that run along with the main application container within the same Pod. These containers are used to enhance or to extend the functionality of the primary app container by providing additional services, or functionality such as logging, monitoring, security, or data synchronization, without directly altering the primary application code. Typically, you only have one app container in a Pod.| Kubernetes
Disclaimer: This blog post is a deep dive in to the topic of Linux container storage, specifically looking at Netflix’s Open Source Titus container platform. Netflix happens to be my employer, but nothing in this blog post is secret or talk about anything that isn’t already open source. In Part 1, I discussed the current state of the art of container storage with the CSI+kubernetes, and its limitations. In Part 2, I discuss the problem of mounting storage inside running containers, especi...| xkyle.com
Kubernetes lets you configure single-stack IPv4 networking, single-stack IPv6 networking, or dual stack networking with both network families active. This page explains how.| Kubernetes
Kubernetes objects are persistent entities in the Kubernetes system. Kubernetes uses these entities to represent the state of your cluster. Learn about the Kubernetes object model and how to work with these objects.| Kubernetes
Learn about a Service in Kubernetes. Understand how labels and selectors relate to a Service. Expose an application outside a Kubernetes cluster.| Kubernetes
Node-pressure eviction is the process by which the kubelet proactively terminates pods to reclaim resources on nodes. FEATURE STATE: Kubernetes v1.31 [beta] (enabled by default: true) Note:The split image filesystem feature, which enables support for the containerfs filesystem, adds several new eviction signals, thresholds and metrics. To use containerfs, the Kubernetes release v1.32 requires the KubeletSeparateDiskGC feature gate to be enabled. Currently, only CRI-O (v1.29 or higher) offers ...| Kubernetes
Applications running in a Kubernetes cluster find and communicate with each other, and the outside world, through the Service abstraction. This document explains what happens to the source IP of packets sent to different types of Services, and how you can toggle this behavior according to your needs. Before you begin Terminology This document makes use of the following terms: NAT Network address translation Source NAT Replacing the source IP on a packet; in this page, that usually means repla...| Kubernetes
Production-Grade Container Orchestration| Kubernetes
In this extensive guide to Serverless Containers you will learn what they are and 3 services by the Big 3 Clouds to run them including Google Cloud Run.| Geshan's Blog
If you want to control traffic flow at the IP address or port level (OSI layer 3 or 4), NetworkPolicies allow you to specify rules for traffic flow within your cluster, and also between Pods and the outside world. Your cluster must use a network plugin that supports NetworkPolicy enforcement.| Kubernetes