Novel optimizers for maximally updating both the weights and activations of neural networks while keeping weight norms under control. To get there, we needed to invent an efficient, GPU/TPU-friendly method for eigenvalue clipping and solve the Steepest Descent problem on the Positive Semidefinite Cone, Convex Spectrahedron, and finally on the Spectral Ball.| leloykun.github.io
Finally, we train an LLM! The final part of Chapter 5 of Build an LLM (from Scratch) runs the model on real text, then loads OpenAI’s GPT-2 weights for comparison.| Giles' Blog
Hello| kellerjordan.github.io
A cheap, GPU/TPU-friendly method for eigenvalue clipping useful for e.g. controlling weight norms in deep learning and projection on the positive semi-definite cone.| leloykun.github.io
随着LLM时代的到来,学术界对于优化器的研究热情似乎有所减退。这主要是因为目前主流的AdamW已经能够满足大多数需求,而如果对优化器“大动干戈”,那么需要巨大的验证成本。因此,当前优化器的变化,...| kexue.fm