As data engineers, you might have heard the terms functional data pipeline, factory pattern, singleton pattern, etc. One can quickly look up the implementation, but it can be tricky to understand what they are precisely and when to (& when not to) use them. Blindly following a pattern can help in some cases, but not knowing the caveats of a design will lead to hard-to-maintain and brittle code! While writing clean and easy-to-read code takes years of experience, you can accelerate that by und...| www.startdataengineering.com
Data engineering project for beginners, using AWS Redshift, Apache Spark in AWS EMR, Postgres and orchestrated by Apache Airflow.| www.startdataengineering.com
Struggling to come up with a data engineering project idea? Overwhelmed by all the setup necessary to start building a data engineering project? Don't know where to get data for your side project? Then this post is for you. We will go over the key components, and help you understand what you need to design and build your data projects. We will do this using a sample end-to-end data engineering project.| www.startdataengineering.com
Unsure how to load data into a data warehouse? Then this post is for you. In this post, we go over 4 key patterns to load data into a data warehouse. These patterns can help you build resilient and easy-to-use data pipelines. Level up as a data engineer and deliver usable data faster!| www.startdataengineering.com
Data pipelines built (and added on to) without a solid foundation will suffer from poor efficiency, slow development speed, long times to triage production issues, and hard testability. What if your data pipelines are elegant and enable you to deliver features quickly? An easy-to-maintain and extendable data pipeline significantly increase developer morale, stakeholder trust, and the business bottom line! Using the correct design pattern will increase feature delivery speed and developer valu...| www.startdataengineering.com
Frustrated with handling data type conversion issues in python? Then this post is for you. In this post, we go over a reusable data type conversion pattern using Pydantic. We will also go over the caveats involved in using this library.| www.startdataengineering.com