In this post, we explore how to build highly available Kubernetes applications using Amazon EKS Auto Mode by implementing critical features like Pod Disruption Budgets, Pod Readiness Gates, and Topology Spread Constraints. Through various test scenarios including pod failures, node failures, AZ failures, and cluster upgrades, we demonstrate how these implementations maintain service continuity and maximize uptime in EKS Auto Mode environments.| Amazon Web Services
VPC and Subnet Considerations| docs.aws.amazon.com
Pods are the smallest deployable units of computing that you can create and manage in Kubernetes. A Pod (as in a pod of whales or pea pod) is a group of one or more containers, with shared storage and network resources, and a specification for how to run the containers. A Pod's contents are always co-located and co-scheduled, and run in a shared context. A Pod models an application-specific "logical host": it contains one or more application containers which are relatively tightly coupled.| Kubernetes
Learn how to save on infrastructure costs for your OpenFaaS functions on AWS EKS with Karpenter cluster autoscaling.| OpenFaaS - Serverless Functions Made Simple
Every node in a Kubernetes cluster runs a kube-proxy (unless you have deployed your own alternative component in place of kube-proxy). The kube-proxy component is responsible for implementing a virtual IP mechanism for Services of type other than ExternalName. Each instance of kube-proxy watches the Kubernetes control plane for the addition and removal of Service and EndpointSlice objects. For each Service, kube-proxy calls appropriate APIs (depending on the kube-proxy mode) to configure the ...| Kubernetes
Does Istio ambient introduce a SPOF? No.| blog.howardjohn.info
How to assign Node metadata like labels and annotations to Pods.| Kyverno
PodSpreadTopology is a way to get Kubernetes to spread out your pods across a failure domain, typically nodes or zones. Kubernetes platforms typically have some default spread built in, although it may not be as aggressive as you want (meaning, it might be more tolerant of imbalanced spread). Her| William Denniss
Plan, set up, and have GKE Autopilot mode manage your clusters, including node management, security, and scaling.| Google Cloud
This page describes running Kubernetes across multiple zones. Background Kubernetes is designed so that a single Kubernetes cluster can run across multiple failure zones, typically where these zones fit within a logical grouping called a region. Major cloud providers define a region as a set of failure zones (also called availability zones) that provide a consistent set of features: within a region, each zone offers the same APIs and services.| Kubernetes
This page contains an overview of the various feature gates an administrator can specify on different Kubernetes components. See feature stages for an explanation of the stages for a feature. Overview Feature gates are a set of key=value pairs that describe Kubernetes features. You can turn these features on or off using the --feature-gates command line flag on each Kubernetes component. Each Kubernetes component lets you enable or disable a set of feature gates that are relevant to that comp...| Kubernetes
You can constrain a Pod so that it is restricted to run on particular node(s), or to prefer to run on particular nodes. There are several ways to do this and the recommended approaches all use label selectors to facilitate the selection. Often, you do not need to set any such constraints; the scheduler will automatically do a reasonable placement (for example, spreading your Pods across nodes so as not place Pods on a node with insufficient free resources).| Kubernetes