Introduction Hi, I’m Glenn Fiedler. Welcome to Virtual Go, my project to create a physically accurate computer simulation of a Go board and stones. So far in this series, we have mathematically defined the go stone, rendered it, determined how it moves and rotates, and discussed how its shape affects how it responds to collisions. Now in this article we reach our first milestone: A go stone bouncing and coming to rest on the go board.| Gaffer On Games
Introduction Hi, I’m Glenn Fiedler. Welcome to Virtual Go, my project to create a physically accurate computer simulation of a Go board and stones. In the previous article we detected collision between the go stone and the go board. Now we’re working up to calculating collision response so the stone bounces and wobbles before coming to rest on the board. But in order to reach this goal we first need to lay some groundwork.| Gaffer On Games
Introduction Hi, I’m Glenn Fiedler. Welcome to Virtual Go, my project to create a physically accurate computer simulation of a Go board and stones. In previous articles we mathematically defined the shape of a go stone and tessellated its shape so it can be drawn with 3D graphics hardware. Now we want to make the go stone move, obeying Newton’s laws of motion so the simulation is physically accurate. The stone should be accelerated by gravity and fall downwards.| Gaffer On Games