GPU acceleration can be trivial for Python users. Follow CUDA installation steps carefully, replace import numpy as np with import cupy as np, and you will often get the 100x performance boosts without breaking a sweat. Every time you write magical one-liners, remember a systems engineer is making your dreams come true. A couple of years ago, when I was giving a talk on the breadth of GPGPU technologies, I published a repo.| ashvardanian.com
This will be a story about many things: about computers, about their (memory) speed limits, about very specific workloads that can push computers to those limits and the subtle differences in Hash-Tables (HT) designs. But before we get in, here is a glimpse of what we are about to see. A friendly warning, the following article contains many technical terms and is intended for somewhat technical and hopefully curious readers.| ashvardanian.com
There are only two kinds of languages: the ones people complain about and the ones nobody uses. – Bjarne Stroustrup, creator of C++. Very few consider C++ attractive, and only some people think it’s easy. Choosing it for a project generally means you care about the performance of your code. And rightly so! Today, machines can process hundreds of Gigabytes per second, and we, as developers, should all learn to saturate those capabilities.| ashvardanian.com