Table of Contents GreedyMini Results A first look Comparison with optimal ILP values Large alphabets Analysing GreedyMini at \(w=3\) \(w=3\), \(k=3\) \(w=7\), \(k=3\) \(w=3\), \(k=4\) \(w=3\), \(k=5\) \(w=3\), \(k=6\) \(w=3\), \(k=7\) Looking at fixed \(k=5\) \(k=5\), \(w=4\) \(k=5\), \(w=5\) \(k=5\), \(w=6\) \(k=5\), \(w=7\) \(k=5\), \(w=8\) \(k=5\), \(w=12\) Investigating \(w=5\) \(w=5\), \(k=8\) What about \(k = w+1\)? In this post, we will look at the minimizer schemes generated by the gr...