Large language models (LLMs) are widely used but expensive to run, especially as inference workloads grow. To lower costs, maximizing the request batch size by managing GPU memory efficiently is crucial. While PagedAttention has recently been proposed to improve the efficiency of memory management, we find that the growing heterogeneity in the embeddings dimensions, attention, and access patterns of modern LLM architectures introduces new challenges for memory allocation. In this paper, we pr...