With recent advances in large language models (LLMs), this paper explores the potential of leveraging state-of-the-art LLMs,such as GPT-4, to transfer existing human-written properties (e.g.,those from Certora auditing reports) and automatically generate customized properties for unknown code. To this end, we embed existing properties into a vector database and retrieve a reference property for LLM-based in-context learning to generate a new property for a given code. While this basic process...