The $X^{s,b}$ spaces, as used by Beals, Bourgain, Kenig-Ponce-Vega, Klainerman-Machedon and others, are fundamental tools to study the low-regularity behaviour of non-linear dispersive equations. It is of particular interest to obtain bilinear or multilinear estimates involving these spaces. By Plancherel's theorem and duality, these estimates reduce to estimating a weighted convolution integral in terms of the $L^2$ norms of the component functions. In this paper we systematically study weig...