This paper was accepted at the DataWorld (Data Curation) Workshop at ICML 2025. Multimodal models are trained on large-scale web-crawled datasets, which often contain noise, bias, and irrelevant information. This motivates the use of data selection techniques, which can be divided into model-free variants, relying on heuristic rules and downstream datasets, and model-based approaches, such as those using influence functions. The former can be expensive to design and risks introducing unwanted...