Self-supervised learning (SSL) has made significant advances in speech representation learning. Models like wav2vec 2.0 and HuBERT have achieved state-of-the-art results in tasks such as speech recognition, particularly in monolingual settings. However, multilingual SSL models tend to underperform their monolingual counterparts on each individual language, especially in multilingual scenarios with few languages such as the bilingual setting. In this work, we investigate a novel approach to re...