Six months have passed since our last year-end review. As the initial wave of excitement sparked by DeepSeek earlier this year begins to wane, AI seems to have entered a phase of stagnation. This pattern is evident in Retrieval-Augmented Generation (RAG) as well: although academic papers on RAG continue to be plentiful, significant breakthroughs have been few and far between in recent months. Likewise, recent iterations of RAGFlow have focused on incremental improvements rather than major fea...| ragflow.io
Six months have passed since our last year-end review. As the initial wave of excitement sparked by DeepSeek earlier this year begins to wane, AI seems to have entered a phase of stagnation. This pattern is evident in Retrieval-Augmented Generation (RAG) as well: although academic papers on RAG continue to be plentiful, significant breakthroughs have been few and far between in recent months. Likewise, recent iterations of RAGFlow have focused on incremental improvements rather than major fea...| ragflow.io
As 2024 comes to a close, the development of Retrieval-Augmented Generation (RAG) has been nothing short of turbulent. Let's take a comprehensive look back at the year's progress from various perspectives.| RAGFlow Blog
The final release of RAGFlow for the year of 2024, v0.15.0, has just been released, bringing the following key updates:| ragflow.io
Infinity is a database specifically designed for Retrieval-Augmented Generation (RAG), excelling in both functionality and performance. It provides high-performance capabilities for dense and sparse vector searches, as well as full-text searches, along with efficient range filtering for these data types. Additionally, it features tensor-based reranking, enabling the implementation of powerful multi-modal RAG and integrating ranking capabilities comparable to Cross Encoders.| ragflow.io
RAGFlow introduces the Text2SQL feature in response to community demand. Traditional Text2SQL requires model fine-tuning, which can significantly increase deployment and maintenance costs when used in enterprise settings alongside RAG or Agent components. RAGFlow’s RAG-based Text2SQL leverages the existing (connected) large language model (LLM), enabling seamless integration with other RAG/Agent components without the need for additional fine-tuned models.| RAGFlow Blog
RAGFlow v0.9 introduces support for GraphRAG, which has recently been open-sourced by Microsoft, allegedly the next generation of Retrieval-Augmented Generation (RAG). Within the RAGFlow framework, we have a more comprehensive definition of RAG 2.0. This proposed end-to-end system is search-centric and consists of four stages. The last two stages—indexing and retrieval—primarily require a dedicated database, while the first two stages are defined as follows:| RAGFlow Blog
Search technology remains one of the major challenges in computer science, with few commercial products capable of searching effectively. Before the rise of Large Language Models (LLMs), powerful search capabilities weren't considered essential, as they didn't contribute directly to user experience. However, as the LLMs began to gain popularity, a powerful built-in retrieval system became required to apply LLMs to enterprise settings. This is also known as Retrieval-Augmented Generation (RAG)...| ragflow.io
RAGFlow v0.6.0 was released this week, solving many ease-of-use and stability issues that emerged since it was open sourced earlier this April. Future releases of RAGFlow will focus on tackling the deep-seated problems of RAG capability. Hate to say it, existing RAG solutions in the market are still in POC (Proof of Concept) stage and can’t be applied directly to real production scenarios. This is primarily due to the numerous unresolved issues within RAG itself:| ragflow.io