Training computer vision (CV) or natural language processing (NLP) models can be expensive and requires large datasets. If labeling is done manually, the process will take a longer training time and requires expensive hardware. For instance, the Generative Pre-trained Transformer 2 (GPT-2), a benchmark-setting language model created by Open AI| Machine learning nuggets
Recurrent Neural Networks (RNNs) are a class of neural networks that form associations between sequential data points. For example, the average sales made per month over a certain period. The data has a natural progression from month to month, meaning that the sales for the first month are the only| Machine learning nuggets
The Keras Functional API provides a way to build flexible and complex neural networks in TensorFlow. The Functional API is used to design networks that are not linear. In this article, you will discover that the Keras Functional API is used to create networks that: * Are non-linear. * Share layers. * Have| Machine learning nuggets
Building object detection and image segmentation models is slightly different from other models. Majorly because you have to use specialized models and prepare the data in a particular way. This article will examine how to perform object detection and image segmentation on a custom dataset using the TensorFlow 2 Object| Machine learning nuggets
Training models in Keras is usually done using the fit method. However, you may want more control over the training process. To do that, you'll need to create a custom training loop. This involves setting up a custom function to compute the loss and gradient. This article will walk you| Machine learning nuggets
In the Implementing Fully Convolutional Networks (FCNs) from scratch in Keras and TensorFlow article, you saw how to build an image segmentation model with FCNs. However, due to the model's limitations, it did not perform very well in the segmenting task. In this post, you will see how to improve| Machine learning nuggets
Building artificial neural networks with TensorFlow and Keras requires understanding some key concepts. After learning these concepts, you'll install TensorFlow and start designing neural networks. This article will cover the concepts you need to comprehend to build neural networks in TensorFlow and Keras. Without further ado, let's get the ball| Machine learning nuggets
In the artificial neural networks with TensorFlow article, we saw how to build deep learning models with TensorFlow and Keras. We covered various concepts that are foundational in training neural networks with TensorFlow. In that article, we used a Pandas DataFrame to build a classification model in Keras. This article| Machine learning nuggets
Fine-tuning has become the new training because training large language models (LLMs) from scratch is computationally expensive. It also requires collecting and preparing large datasets which is also time intensive. These resources are only the purview of a few individuals and organizations. Fortunately, there are many open-source LLMs that one| Machine learning nuggets
With the plethora of open-source language models, it's incredibly difficult to determine if a piece of text is AI generated. However, with a good dataset, you can train a model in TensorFlow to detect if a large language model generated text. It's such an interesting problem that there is even| Machine learning nuggets
JAX is a high performance library that offers accelerated computing through XLA and Just In Time Compilation. It also has handy features that enable you to write one codebase that can be applied to batches of data and run on CPU, GPU, or TPU. However, one of its biggest selling| Machine learning nuggets
First off: If you are familiar with NumPy arrays, understanding TensorFlow Tensors will be as easy as first importing TensorFlow as below: import tensorflow as tf print(tf.__version__) # check version # 2.14.0 💡The examples in this article use TensorFlow v2.x, so concepts deprecated and or that were| Machine learning nuggets
The recent wave of generative language models is the culmination of years of research starting with the seminal "Attention is All You Need" paper. The paper introduced the Transformer architecture that would later be used as the backbone for numerous language models. These text generation language models are autoregressive, meaning| Machine learning nuggets
BERT is a popular Masked Language Model. Some words are hidden from the model and trained to predict them. The model is bidirectional, meaning it has access to the words to the left and right, making it a good choice for tasks such as text classification. Training BERT can quickly| Machine learning nuggets
This blog post will explore 20 powerful and unique Pandas functions that can significantly enhance your data analysis workflow. We will be using the famous Iris dataset as an example to demonstrate each function. The Iris dataset contains four features: Sepal Length, Sepal Width, Petal Length, and Petal Width, along| Machine learning nuggets
You can now use Generative AI Studio on Vertex AI to prompt, tune and deploy Google's foundational models, including PaLM 2, Imagen, Codey, and Chirp. You can easily design and fine-tune your prompt and copy the code required to deploy the solution. Leveraging a foundational model is a no-brainer because| Machine learning nuggets
Training computer vision models with little data can lead to poor model performance. This problem can be solved by generating new data samples from the existing images. For example, you can create new images by flipping and rotating the existing ones. Generating new image samples from existing ones is known| Machine learning nuggets
LangChain is an open-source tool for building large language model (LLM) applications. It supports a variety of open-source and closed models, making it easy to create these applications with one tool. Some of the modules in Langchain include: * Models for supported models and integrations * Prompts for making it easy to| Machine learning nuggets
Image generation models are causing a sensation worldwide, particularly the powerful Stable Diffusion technique. With Stable Diffusion, you can generate images with your laptop, which was previously impossible. Here's how diffusion models work in plain English: 1. Generating images involves two processes. Diffusion adds noise gradually to the image until| Machine learning nuggets
An autoencoder takes an input image and creates a low-dimensional representation, i.e., a latent vector. This vector is then used to reconstruct the original image. Regular autoencoders get an image as input and output the same image. However, Variational AutoEncoders (VAE) generate new images with the same distribution as| Machine learning nuggets
Training computer vision models requires a lot of time because of the size of the models and image data. Therefore, training these models can take prolonged periods of time, especially when training on a single GPU. You can reduce the training time by distributing the training across several GPUs. This| Machine learning nuggets
I have created technical content for various companies over the last 5 years. Educating developers is how technology companies use to grow their communities. Developers hate being sold to, so this is the best way to get developers to use a company's product. The product should solve a problem for| Machine learning nuggets
TensorBoard is a visualization library that enables data science practitioners to visualize various aspects of their machine learning modeling. For instance, you can use TensorBoard to: * Visualize the performance of the model. * Tuning model parameters. * Profile the executions of the program. For example, check the utilization of GPUs. * Debug machine| Machine learning nuggets
TensorFlow| Machine learning nuggets