Within the C committee, there’s been a lot of talk about what the C charter means and whether it should be updated or not. My personal musing on the topic is that the C charter needs to be updated in order for C to remain relevant long-term. Whether C should remain relevant long-term is an exercise left to the reader. Note, these thoughts may change over time as I gather more feedback from more places.| Ruminations
The year is 2023 and you’re asking “What’s new in C?” Surely the answer is “absolutely nothing”, right?| Ruminations
One of the lesser-known features of C++11 is the fact that you can overload your non-static member functions based on whether the implicit this object parameter is an lvalue reference or an rvalue reference by specifying a functions ref-qualifier. This feature works similar to the way cv-qualifiers work when specifying a method must be called on a const or volatile object, and can in fact be combined with cv-qualifiers.| Ruminations
In C++, there are two forms of binary operator overloading you can use when designing an API. The first form is to overload the operator as a member function of the class, and the second form is to overload the operator as a friend function of the class. I want to explore why you would use one form of overloading instead of the other, using a Fraction class as an example.| Ruminations
I recently read a post by Phillip Larkson where the C preprocessor was used to implement a four-bit adder entirely at compile time. This got me wondering whether I could implement the same concept using C++ template metaprogramming. It seemed theoretically possible as all the components can be calculated at runtime, but I wanted to avoid making use of the preprocessor for anything but supplying the original values to be added. The goal was to compile something on the command line like: | Ruminations
The expression used in a sizeof operator is an unevaluated expression in C and C++. This can make for some surprising situations if you are unaware of it. For instance:| Ruminations
One of the lesser-known features of Visual Studio’s C/C++ compiler are the pointer type attributes __ptr32 and __ptr64. More information about them can be found on MSDN. These pointer type attributes are used to control the visible size and behavior of pointers in 32- and 64-bit applications. Their usage is a bit strange, but if you need to do interop between 32- and 64-bit mode, they can be handy features to have. Additionally, there are the __sptr and __uptr qualifiers which allow you...| Ruminations
Just because I’ve not written many posts lately doesn’t mean I’ve been silent. You should go check out the Tidbits page, it currently has over 20 little juicy pieces of information about C and C++. I’ve been using it as a training exercise for my coworkers, and it’s been very successful so far. I’ll likely be continuing with regular Friday updates of Tidbits for quite a while to come.| Ruminations
Variable argument lists are very arcane in the world of C. You’ll see them expressed in function signatures as … at the end of the parameter list, but you may not understand how they work or what they do.| Ruminations
C++20 introduced the likelihood attributes [[likely]] and [[unlikely]] as a way for a programmer to give an optimization hint to their implementation that a given code path is more or less likely to be taken. On its face, this seems like a great set of attributes because you can give hints to the optimizer in a way that is hopefully understood by all implementations and will result in faster performance. What’s not to love?| Ruminations