GPT OSS| docs.vllm.ai
Large language models (LLMs) are widely used but expensive to run, especially as inference workloads grow. To lower costs, maximizing the request batch size by managing GPU memory efficiently is crucial. While PagedAttention has recently been proposed to improve the efficiency of memory management, we find that the growing heterogeneity in the embeddings dimensions, attention, and access patterns of modern LLM architectures introduces new challenges for memory allocation. In this paper, we pr...| arXiv.org
Narrow bit-width data formats are key to reducing the computational and storage costs of modern deep learning applications. This paper evaluates Microscaling (MX) data formats that combine a per-block scaling factor with narrow floating-point and integer types for individual elements. MX formats balance the competing needs of hardware efficiency, model accuracy, and user friction. Empirical results on over two dozen benchmarks demonstrate practicality of MX data formats as a drop-in replaceme...| arXiv.org