I got a question today about our AGILE A/B testing calculator and the statistics behind it and realized that I’m yet to write a dedicated post explaining the efficiency gains from using the method in more detail. This despite the fact that these speed gains are clearly communicated and verified through simulation results presented in our AGILE statistical method white paper [1].| Blog for Web Analytics, Statistics and Data-Driven Internet Marketing | Analy...
What is the goal of A/B testing? How long should I run a test for? Is it better to run many quick tests, or one long one? How do I know when is a good time to stop testing? How do I choose the significance threshold for a test? Is there something special about 95%? Does it make sense to run tests at 50% significance? How about 5%? What is the cost of adding more variants to test?| Blog for Web Analytics, Statistics and Data-Driven Internet Marketing | Analy...
After many months of statistical research and development we are happy to announce two major releases that we believe have the potential to reshape statistical practice in the area of A/B testing by substantially increasing the accuracy, efficiency and ultimately return on investment of all kinds of A/B testing efforts in online marketing: a free white paper and a statistical calculator for A/B testing practitioners. In this post we’ll cover briefly the need for a new method, some highligh...| Blog for Web Analytics, Statistics and Data-Driven Internet Marketing | Analy...
This is a comprehensive guide to the different types of costs and benefits, risks and rewards related to A/B testing. Understanding them in detail should be valuable to A/B testers and businesses considering whether to engage in A/B testing or not, what to A/B test and what not to test, etc. As far as I am aware, this is the first attempt to systematically review all the different factors contributing to the return on investment from the process of A/B testing. Here I will cover A/B testing m...| Blog for Web Analytics, Statistics and Data-Driven Internet Marketing | Analy...
White papers and case studies on web analytics, statistics, ab testing, experiments in online marketing and user experience design.| www.analytics-toolkit.com
The one-stop-shop for statistical planning and analysis of online A/B tests. Analytics Toolkit's advanced A/B test statistical calculator enable your A/B testing program to reach new levels of statistical rigor and efficiency. Plan and analyze A/B tests with ease and get results you can trust.| www.analytics-toolkit.com
Learn the meaning of Sequential Testing (a.k.a. sequential monitoring, group-sequential design, GSD, GST) in the context of A/B testing, a.k.a. online controlled experiments and conversion rate optimization. Detailed definition of Sequential Testing, related reading, examples. Glossary of split testing terms.| www.analytics-toolkit.com
Running shorter tests is key to improving the efficiency of experimentation as it translates to smaller direct losses from testing inferior experiences and also less unrealized revenue due to late implementation of superior ones.| Blog for Web Analytics, Statistics and Data-Driven Internet Marketing | Analy...
How long does a typical A/B test run for? What percentage of A/B tests result in a ‘winner’? What is the average lift achieved in online controlled experiments? How good are top conversion rate optimization specialists at coming up with impactful interventions for websites and mobile apps?| Blog for Web Analytics, Statistics and Data-Driven Internet Marketing | Analy...